RF-Design of the AAA β =0.175 Spoke Resonator

Frank Krawczyk LANL

Workshop on the Advanced Design of Spoke Resonators

Los Alamos, NM, USA October 7 and 8, 2002

Introduction

- Presentation covers a low-β spoke resonator with:
 - 2 gaps, β =0.175, 350 MHz, integrated ports for high current operation
- The following issues will be covered:
 - Simulation tools -RF Design-
 - Design strategy
 - Integration of RF and mechanical design
 - Other conventions
- Results will be presented for
 - Cavity geometry
 - RF parameters of the cavity
 - RF-Interaction with the coupler
 - Thermal issues of the coupler/cavity interface

Simulation Tools -RF Design-

MAFIA	MWS	MICAV		
Known reliability	Fairly new			
Extensive post- processing	Post-processing by user written VBA	Post-processing by external user programs		
Geometry import from CAD				
Poor surface representation (requires fine meshes) slow	Accurate surface representation (requires moderate meshes) fast			
Manual mesh improvements give good results	Overall very efficient tool. Modeling difficulties for complex geometry, Inaccurate peak surface fields.	with mechanical or (COSMOS/M) models Limited experience		

Simulation Tools

Design Strategy

2. Set Cavity Length

4. Further steps:

- Optimize Endwall Shape
- Incorporate port attachments
- Tune cavity by setting radius

RF and Structural Design Integration

RF Effects of Deformations: Tuning Sensitivity/ Forces

Shell Mesh ← → Volume Mesh
Common nodes allow recalculation
of RF-case without re-meshing
(reduces discretization error)

Conventions

- 1. Maintain circumference along spoke
- 2. Keep overall gap-to-gap length to $2/3 \beta\lambda$
- 3. Allow deviation from $d = 2^*$ gap length

Geometry

RF Results

Q ₀ (4 K)	1.05E+09 (for 61 n^{Ω})
$T(\beta_g)$	$0.7765 (\beta_g=0.175)$
$T_{max}(\beta)$	0.8063 (@ β=0.21)
G F /F T	$\frac{64.1 \Omega}{2.82}$
E _{pk} /E ₀ T	
H _{pk} /E ₀ T	73.8 G/MV/m
P _{cav} (4 K)	4.63 W @ 7.5 MV/m
R/Q	124 Ω

RF Parameter Comparison

	0.175	0.200	0.340	ANL 0.3	APT 0.64
Frequency [MHz]	350	350	350	350	700
$ T_{g} $	0.777	0.787	0.769	-	0.650
T _{max}	0.806	0.790	0.777	0.910	0.700
Q_0 (61/16 nΩ)	1.05E+09	1.34E+09	1.28E+09	1.01E+09	9.40E+09
$ZT^2/Q\left[\Omega\right]$	124	214	318	295	191
E _{pk} /E ₀ T	2.82	< 3.60	< 3.47	3.18	3.38
B_{pk}/E_0T [G/MV/m]	73.8	< 96	< 104	85	70
G [Ω]	64.1	94	90	70.7	149
Q_x (nom.)	1.90E+05	1.10E+05	1.10E+05	-	2.00E+05
E_0T (nom.) [MV/m]	7.50	5.00	5.00		6.00
B _{pk} @ E ₀ T [G]	554	TBD	TBD	-	420
B _{pk} in testing [G]	1040	-	-	1000	840

Optimized Geometry

── Non-Optimized Geometry

Design Integration: Coupling Evaluation

Qx vs Tip for Ea=7.5 MV/m

Goal: 1. Tip position

2. Frequency

I [mA]	Qx	Δ f [kHz]	z [mm]
13.3	2.13E+6	reference	23
20.0	1.42E+6	-200	20
100.0	2.83E+6	-970	9

Integration Issues: TW Solution/ Losses

Radiative losses @ 8.5 kW (7.5 MV/m, 13.3 mA)

p_{tip_max}	4.82 W/cm ²
P_{tip_total}	
T _{tip}	52° C
P _{thermal}	0.5 W

Question:

Accounting for loss contributions to cavity Q?

Q₀ w or w/o tip losses, tip 6 cm withdrawn

P _{cav}	Pouter (SST)	Pantenna	Q_0	ΔQ_0
1.0 W	-	-	3.83 E8	-
1.0 W	0.051 W	-	3.64 E8	-4.8 %
1.0 W	0.051 W	9.9 W	3.49 E7	- 91.0 %

Summary/Outlook

- The design of a low β spoke resonator has been presented. The RF-parameters indicate the potential for a high gradient operation.
- While the design approach seems to be similar to the approaches others have done, there are details that need review.
- The main issue for discussion is the integration/interface issue between cavity and coupler, especially for highcurrent applications.

